Bioengineering to Save the World

Hal Alper The University of Texas at Austin

Everything we do leaves a footprint on our environment

Some impacts are not easily seen

We need a more sustainable solution for our Planet

Sustainability requires a transition away from traditional chemical manufacturing

Initially we wonder whether we could "grow" these materials?

Better yet, what if "end-of-life" turns into a feedstock?

Bioengineering can convert "waste into treasure"

Waste Inputs

New Products

Harnessing the power of a cell to transform waste

Olive mill waste water has a high organic content

OMWW Composition

5-

Teaching yeast cells to consume waste from olive processing

Converting waste water to fuel

Waste cooking oil is a hazardous waste

Improperly disposed waste cooking can wreak havoc in pipes

Converting locally sourced cooking oil to upgraded biodiesel

Bioreactor in Alper Lab

Nearly 400 millions tons of plastics will be produced this year

How much is 400 million tons?

11 Million fully loaded tractor trailers

<3 Million in the US

700,000 fully loaded A380 aircraft

~250 manufactured

Collective weight of every human

Plastics enable many advances in our modern life

Decrease weight 30% and increased fuel efficiency >18%

Enable modern medicine and sterilizable devices

Enable cell phone function and heat dissipation

The long-lasting impact of plastics

Impact of single use varies across sectors

Some plastics can be repurposed for a new life

How much plastic waste is actually recycled?

Traditional mechanical recycling is limited

The problem with plastics are current production, end-of-life, and over-use

Plastic production, conversion, and handling emit 3.4% of global greenhouse gas emissions

The problem with accumulated plastic waste

Estimated 1.8 Trillion pieces of plastic

~50% of this is discarded fishing supplies

The Ocean Cleanup, 2023

Plastic nurdles as the source of all of our materials

>10,000 tons of nurdles enter out waterways each year

Environmental disasters highlight challenges

X-Press Pearl June 2021 Sri Lanka

~2000 tons of nurdles were released

Microplastics: another impact of plastic usage (and waste)

~60% of all microplastics come from two very common daily activities

Microplastics from the laundry

Average load :

1 gram microfibers >700,000 particles

Most pass through water treatment facility An estimated 1.53 Million tons / year of microplastics are released

Per person, that is equivalent to:

Are plastic alternatives better for the environment / climate?

In terms of CO_2 / net global warming potential:

1 HDPE plastic bag used once =

Paper bag used 3 times LDPE bag used 4 times Cotton bag used 131 times Are plastic alternatives better for the environment / climate?

In terms of CO_2 / net global warming potential:

1 PP plastic straw used once =

Paper straw used 5 times Metal straw used 150 times

Rana et al., MSU, 2020

We need a sustainable, circular solution

Every singleuse material has the same problem: single use

How to close the loop:

Re-thinking PET recycling to enable infinite reusability

Nature has slowly found a way...

...all thanks to an enzyme name PETase.

Harnessing the power of an enzyme to transform waste

Waste Product

Bioengineered Enzyme

A machine-learning based approach

Re-designing PETase using a machine learning model

Work in collaboration with: Drs. Ellington, Lynd, and Zhang UT-Austin

FAST-PETase breaks down plastic at the molecular level

Depolymerization across a wide-range of PET plastics

Scaling up the enzymatic degradation process

Scale-up of a plastic container breakdown at 50 °C using FAST-PETase

30 hr

Time-lapse of plastic degradation by enzyme

Obtaining full-circularity for PET

Enzyme technologies can enable infinite re-use of PET

New organisms to degrade all plastics

EG

The discovery of 1 microbe opened up so many possibilities for PET.....

Ideonella sakaiensis first identified in 2016

.....Now we have the potential to discover the "1 microbe" for other plastics.

Moving forward: "Bioprospecting" for new organisms

In the quest to identify new microbes

PET

PVC

PHB

Solving the issue for all single-use materials

Everything we do leaves a footprint on our environment...

...but the promise of bioengineering can save the World

The Alper Laboratory

0000

zymergen

NAL INST

INTREXON°

Funding through the years:

evolva

Shire

SAMSUNG

© Draths (

Key Contributors

Post-doc Hongyuan Lu Huaimin Wang

CONTEX

JOINT GENOME INSTITUTE

MedImmune ExonMobil

(MANUSBIO

ecovvst

<u>Graduate</u>

TEXAS GULF COAST

RESEARCH CENTER

Daniel Acosta Amelia Bergeson Sarah Coleman Rodney Ridley Angela Gordillo Sierra

Undergraduate

Larissa Aspiras Geena Kaown Beena Lad Jessica Lam Rebeka Nickell Esha Ramanan

te <u>Collaborators</u>

Promoting

Sustainable – Biotech

Alper Lab

Dongming Xie (UML) Danay Nieves (TdeM) Tomás García Cayuela (TdeM) Andy Ellington (UT) Nate Lynd (UT)

Hal Alper

Department of Chemical Engineering The University of Texas at Austin halper@che.utexas.edu http://www.che.utexas.edu/alper_group/ X: @LabAlper

Bioengineering to Save the World

Hal Alper The University of Texas at Austin

