

UT Environmental Science Institute

#98

The Future of 3D Printing: The Democratization of Design

Dr. Carolyn Seepersad October 16, 2015

Produced by and for *Hot Science - Cool Talks* by the Environmental Science Institute. We request that the use of these materials include an acknowledgement of the presenter and *Hot Science - Cool Talks* by the Environmental Science Institute at UT Austin. We hope you find these materials educational and enjoyable.

The Future of 3D Printing: The Democratization of Design

Carolyn Conner Seepersad, PhD Associate Professor and General Dynamics Faculty Fellow

October 16, 2015

Product, Process, and Materials Design Laboratory and Laboratory for Freeform Fabrication Mechanical Engineering Department The University of Texas at Austin

Engine parts, GE

Cake, 3DSystems/Culinary

Sculpture, Bathsheba Grossman

Prosthetics, Bespoke Innovations

Prosthetics, Open Bionics

3D Print Almost Anything... Almost <u>Anywhere</u>...

Longhorn Maker Studio at UT Austin

3D Print Almost Anything... Almost <u>Anywhere</u>...

Medical devices, Not Impossible Labs (Sudan)

3D Printing: The Next Industrial Revolution?

Cranial implants, Custom IMD

Why are we so fascinated by 3D printing?

How does 3D printing work?

How does 3D printing work?

How does 3D printing work? Material Extrusion Process

How does it work? Laser Sintering Process

Other kinds of manufacturing:

Molding

Xcentricmold.com

Other kinds of manufacturing:

Subtractive

Caldergr.com

Wegst, et al., Nature

What are the origins of additive manufacturing?

The Origins of Additive Manufacturing Nature

Beginning of time: Nature

Fimeline

The Origins of Additive Manufacturing 3D Photosculptures (1860s)

1860s-1870s: Photoscupitures

imeline

Beginning of time: Nature

Admiral Farragut sits for photosculpture, late 1860's

The Origins of Additive Manufacturing Topography Techniques (1892)

1890s: Topography

imeline

1860s-1870s: Photoscupltures

Beginning of time: Nature

The Origins of 3D Printing

1981: IBM PC

1890s-1980s: Topography

1860s-1870s: PhotoscupItures

IBM 5150 PC

Beginning of time: Nature

The Origins of 3D Printing Laser Sintering, Stereolithography, FDM

1890s-1980s: Topography

1860s-1870s: Photoscupltures

Beginning of time: Nature

Early Laser Sintering at UT Austin

Carl Deckard Joe Beaman

Present Day: New Industrial Revolution?

1989: Fused Deposition Modeling

1986:

Laser Sintering

1984: Stereolithography

Timeline

1890s-1980s: Topography

1860s-1870s: PhotoscupItures

Beginning of time: Nature

Is 3D printing the next industrial revolution?

Is 3D Printing the next industrial revolution?

Oxford Museum of the History of Science absoc.org

Ely, Kashdan, Kuhr, Swantner, Vaughan UT Austin

So, what are we 3D printing now?

One-of-a-kind fabrication

Olaf Diegel Wohlers Report 2012

www.3DSystems.com Harvest Technologies

Personal Customization

Crawford, Neptune, et al. UT Austin

Invisalign

Functional complexity

GE/EADS via Ponoko.com

Lopes, MacDonald, Wicker, 2012, RPJ

A Snapshot of One of My Research Projects

Collaborators:

Mike Haberman, Preston Wilson, Desi Kovar, Dixon Correa, Tim Klatt, Sergio Cortes, Ken Bostwick, Mark Kershisnik, Jared Allison, Zahra Ahmed

Negative Stiffness Honeycombs with Superior Impact Protection

Conventional Honeycomb

Plastic buckling has a short, one-compression lifespan

New NS Honeycomb

Elastic buckling is resilient, allowing for multiple compressions

(Correa et al., 2014, 2015); Graphic courtesy of Cockrell School of Engineering

Negative Stiffness Honeycombs with Superior Impact Protection

Demonstration of a **Negative Stiffness (NS) Honeycomb** showing elastic buckling

Compressive Behavior of NS Honeycomb

Impact Performance of NS Honeycombs

High speed video of a negative stiffness honeycomb under impact [5].

[5] K. S. Bostwick, "Impact Loading Effects on Negative Stiffness Honeycomb Structures", Master's Thesis, The University of Texas at Austin, 2015.

Impact Behavior of NS Honeycomb

Personal Protection Applications

Prototype impact captured by high speed camera.

How does it feel to wear this device?

Where do we go from here?

Mansoor et al., 2013, Princeton (Extremetech.com) Attala, Wake Forest University

Cornucopia: Digital Gastronomy

The Sugar Lab

Cornell Creative Machines Lab

Barron, Gallagher, Cook, Pradhan, Wang, UT Austin Autodesk 123D

LAMPS, Courtesy of Beaman, Fish, and colleagues

Innovationstation.utexas.edu

What will you make?

What will you make?

Team Acknowledgements

Dr. Carolyn Seepersad

Dr. Carolyn Seepersad's research focuses on developing methods and computational tools for engineering design. She led the creation of The Innovation Station, the first of its kind 3D printing vending machine, accessible to all students on the campus of UT Austin.

Dr. Seepersad is an Associate Professor in the Department of Mechanical Engineering at The University of Texas at Austin. Dr. Seepersad has earned many awards for her research and teaching, including the 2009 inaugural International Outstanding Young Researcher Award in Freeform and Additive Manufacturing from the additive manufacturing community, the 2010 University of Texas Regents' Award for Outstanding Teaching by an Assistant Professor. She has also authored more than 100 peer-review conference and journal publications and one book.