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Motivation: The changing climate

Earth at Night




Past Climate Changes

Temperature and CO, concentration in the atmosphere over the past 400 000 years
(from the Vostok ice core)

Source: IPCC Report on climate change



Past Climate Changes
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Recent climate changes

Departures in temperature in °C (from the 1961-1990 average)
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What is the scientific consensus?

Temperature anomalies in Degrees C. evolcanoes
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What is the scientific consensus?

T Yy

(1),
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE WY,

UNEP

“Warming of the climate system is unequivocal”

“Most of the observed increase in globally averaged temperatures since the mid-20th century
Is very likely due to the observed increase in anthropogenic greenhouse gas concentrations.
Discernible human influences now extend to other aspects of climate, including ocean
warming, continental-average temperatures, temperature extremes and wind patterns.”

>90% certainty: Humans are changing the Earth’s climate

Source: IPCC Report on climate change



Impact of warming on the cryosphere

Photographed in 2000

Bruce Molina

“Chance of an ice-free
North Pole this summer is
slightly less than 50-50”
J. Zwally (NASA)



Impact of warming on the cryosphere

» Sea-level rise

« Changes to ocean circulation
« Changes to weather patterns
* Changes to habitat
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Impact of warming on the cryosphere

MASS BALANCE = “what goes in” - “what comes out”

If more comes “out” than goes “in”, mass balance is negative




Greenland Mass Balance
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Greenland Mass Balance: Why is it negative?

Surface Melt

Source: R. Braithwaite; Arctic Climate impact Assessment



Greenland Mass Balance: Why is it negative?
' Accelerating glaciers
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Greenland Mass Balance: Why is it negative?
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IPCC on the ice sheets
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Since the TAR, progress in understanding how climate is changing in space and in time has
been gained through improvements and extensions of numerous datasets and data analyses,
broader geographical coverage, better understanding of uncertainties, and a wider variety of
measurements. Increasingly comprehensive observations are available for glaciers and snow
cover since the 1960s, and for sea level and ice sheets since about the past decade. However,
data coverage remains limited in some regions.

Dynamical processes related to ice flow not included in current models but ... could increase the
vulnerability of the ice sheets to warming, increasing future sea level rise. Understanding of these
processes is limited and there is no consensus on the magnitude. {4.6, 10.7}

lce dynamics are important!

Source: IPCC Report on climate change



Ice dynamics 101

How Ice moves:

internal deformation
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Ice dynamics 101: Physical properties of ice

If you stretch it slowly; ice thins If you stretch it quickly; ice cracks



Ice Dynamics: Processes left out of IPCC

June 14, 2001

/snow line

. net net accumulation
gelting

NASA Landsat



Ice Dynamics: Processes left out of IPCC
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Ice Dynamics: Processes left out of IPCC

3 b S 3 . . R

June 17, 2003

\

/snow line

NASA Landsat



Ice Dynamics: Processes left out of IPCC
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Ice Dynamics
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Ice Dynamics: Processes left out of IPCC
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Ice Dynamics: Processes left out of IPCC
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@ Greenland Melt-induced Velocity Project @

Research Questions:

1. How does surface melt drain to the ice bed?
2. How does ice respond to increased melt?
3. What will happen to rate of ice flow with further warming?

How to proceed?



Greenland Melt-induced Velocity Project

Research Questions:

1. How does surface melt drain to the ice bed?
2. How does ice respond to increased melt?
3. What will happen to rate of ice flow with further warming?

-reviewed by 4-6 scientists by email

-plan science / )Yy €
-discuss possible results -reviewed by panel of 6-8 scientists
-discuss pitfalls -budget costs and proposal rank are
evaluated by program manager

-go to meetings (critiqued by your _planning begins

peers)

-write up results (also reviewed by 2-4

scientists)

-ideas get tested and retested until they are accepted by the community
-possibly included in international scientific reports (IPCC)
-possibly considered for policy changes - a girl can hope!



The Team
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Getting to Greenland
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Traveling around Greenland
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Getting to the field
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Camping on ‘the ice’




Greenland Melt: Research Questions

1. How does surface melt drain to the ice bed?

2. How does ice respond to increased melt?

3. What will happen to rate of ice flow with further warming?
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Greenland Melt: Ice-penetrating radar

Survival bag
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Greenland Melt: Ice-penetrating radar
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Greenland Melt: Ice-penetrating radar
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Greenland Melt: Ice-penetrating radar
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Radar profiles

Englacial and subglacial characteristics
Water content of the ice and basal materials




25

20
Horizontal Distance (km)

EXt=<esssoc

\MV BE==2 :
= ~ = = 3 ~—
= e > e w = |
Ei=s YA e
2 s 1
A >

=5 N = r
N =3 = L

%‘hl!‘ﬂ \
oI T e
SR soecsocte 2Pt oo - < f=)

-

e S =
~

| -
G
S
@
LS
o
=
)
o
=
]
-
o
Q
o)
O
=
@)
p=
=
-
@
-
o
o
| -
O

(#8SOM 8Aoge w) JybreH



25

Horizontal Distance (km)

20

t %wx/ = mﬂ l.l

e =

- =
-

| -
G
S
@
LS
o
=
)
o
=
]
-
o
Q
o)
O
=
@)
p=
=
-
@
-
o
o
| -
O

(#8SOM @Aoge w) JybiaH



Greenland Melt: Ice-penetrating radar

Height (m above WGS84)
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Greenland Melt: Ice-penetrating radar

Working hypothesis: moulins!
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Height (m above WGS84)

Greenland Melt: Ice-penetrating radar

= features are complex

= sometimes hyperbolae get narrower with depth

= some have multiple returns below the bed

= some are associated with dipping internal layers (*implies vertically oriented*)
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Height (m above WGS84)

Greenland Melt: Ice-penetrating radar

= features are complex

= sometimes hyperbolae get narrower with depth

= some have multiple returns below the bed

= some are associated with dipping internal layers (*implies vertically oriented*)
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Greenland Melt: Ice-penetrating radar

Locations of moulins




Greenland Melt: Ice-penetrating radar

Locations of moulins and lakes (2002-2006)
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Greenland Melt: Ice-penetrating radar

Locations of moulins and lakes (2002-2006)
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Greenland Melt: Crevasse locations
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Greenland Melt: Crevasse locations




Greenland Melt: Crevasse locations




Greenland Melt: Research Questions

1. How does surface melt drain to the ice bed?

* good evidence for moulins which allow rapid drainage of surface water to the base of the ice
* we only see moulins in the ablation zone (where net melting occurs)

* not perfectly correlated to where lakes are on the surface

* better correlated to where surface cracks are

e occur in ice that is relatively thin <800 m
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2. How does ice respond to increased melt?

3. What will happen to rate of ice flow with further warming?
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Greenland Melt: GPS deployment

October 20, 2006

ablation pole

solar panel

battery

GPS receiver

May 15, 2006



Greenland Melt: 2006 GPS results
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 synchronous over ~1km scale
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elevation change (cm)
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Long spatial scale events

* abrupt

» asynchronous (indicates location of event)

» some events have large-scale impact (~10 km? region)

* elevation increase at some sites but draw-down at others is
indicative of some degree of stretching of the ice
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Greenland Melt: Modeling the GPS results
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Greenland Melt: Research Questions

1. How does surface melt drain to the ice bed?

* good evidence for moulins which allow rapid drainage of surface water to the base of the ice
* we only see moulins in the ablation zone (where net melting occurs)

* not perfectly correlated to where lakes are on the surface

* better correlated to where surface cracks are

e occurin ice that is relatively thin <800 m
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2. How does ice respond to increased melt?
» water lubricates the bed and allows ice to move faster

internal deformation basal sliding

M

sover time speeds reduce indicating that the drainage
system learns to accommodate water input
» some of the ice is thinning because it’s stretching

3. What will happen to rate of ice flow with further warming?



Greenland Melt: Future Predictions

Gilant Ice Sheets Threaten Globe!!

5m sea-level rise

i m " : T News Front Page > Environment
Greenland Melt May
Swamp LA, Other Cities,

Study Says

Stefan Lovgren
for National Geographic News
April 8, 2004

Lamont-Doherty Earth Obs.

Published on Tuesday, May 14, 2002 by Reuters

Antarctic Ice Melt Poses Worldwide Threat
by Michael Byrnes

Vanity Fair 2006



Greenland Melt: Future Predictions

News Media Policy Experts

News media wants a good (dramatic) story
Government wants certainty before policy is dictated



Greenland Melt: Future Predictions

However, uncertainty in how the system behaves is very large

Maybe the ice can accommodate
Natural variability increased water supply to the bed?
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Future Predictions: What we need

BOTTOM LINE NEEDS:

1. more data in particular areas

2. better understanding of important processes

3. better integrated global climate models (that include ice sheets)

But, this is what we know...

FACT: Earth is warming FACT: CO2 has a lifetime of
due to greenhouse gases ~100 years (ACT NOW!) FACT: Ice melts!




Future Predictions: The BIG experiment

2020 - 2029 2090 - 2099

Eco-friendly integrated world

Moderately eco-friendly

Business as usual
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WHICH FUTURE DO WE CHOOSE?



a)} Precipitation
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Figure 10.12. Mulii-modef mean changes in (a) precipitation (mim day~'), () soil mofsture content (%), (c) runoff fmm day-') and (d) evaporation (mm day-'). To indicate con-
sistency in the sign of change, regions are stippled where at least 80% of modefs agree on the sfgn of the mean change. Changes are annual means for the SRES A1B scenario
for the perfod 2080 to 2099 refative to 1980 to 1999. Soif moisture and runcff changes are shown at fand points with valid data from at least 10 models. Detaifs of the method

and results for individual modefs can be found in the Supplementary Material for this chapter.
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