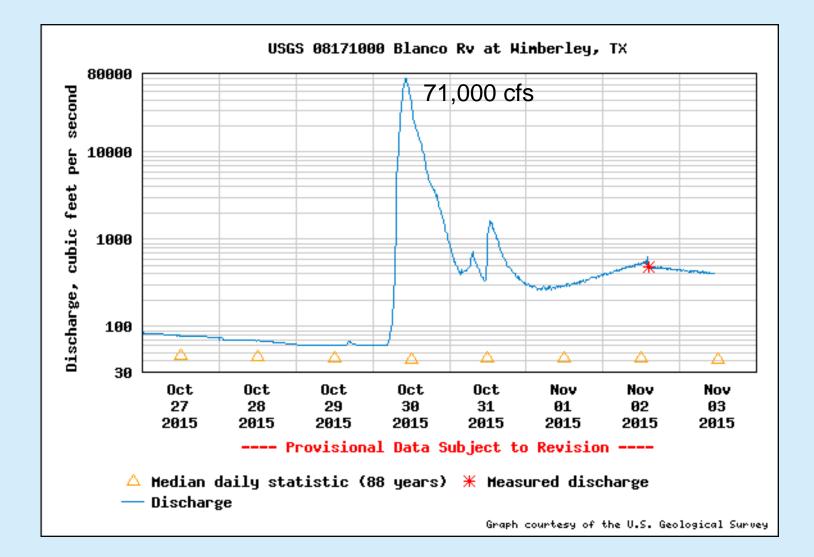
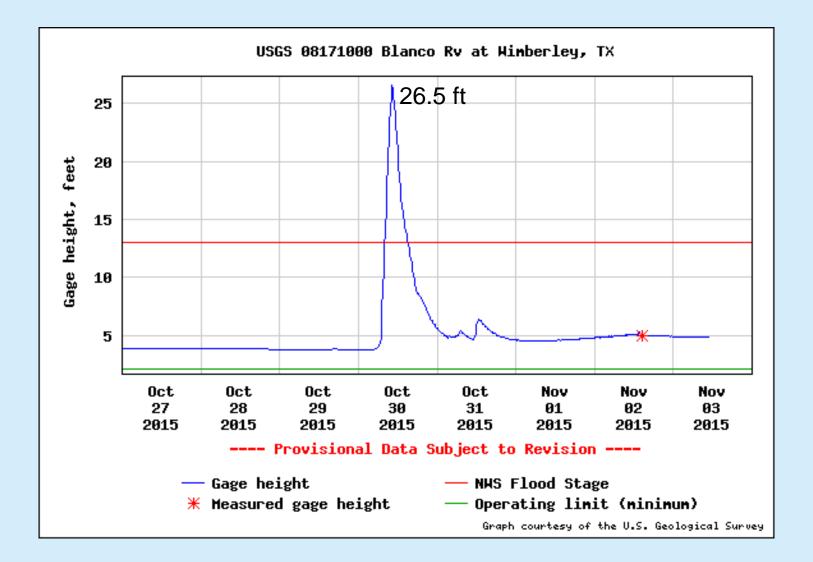

Flood Forecasting for Wimberley, Texas

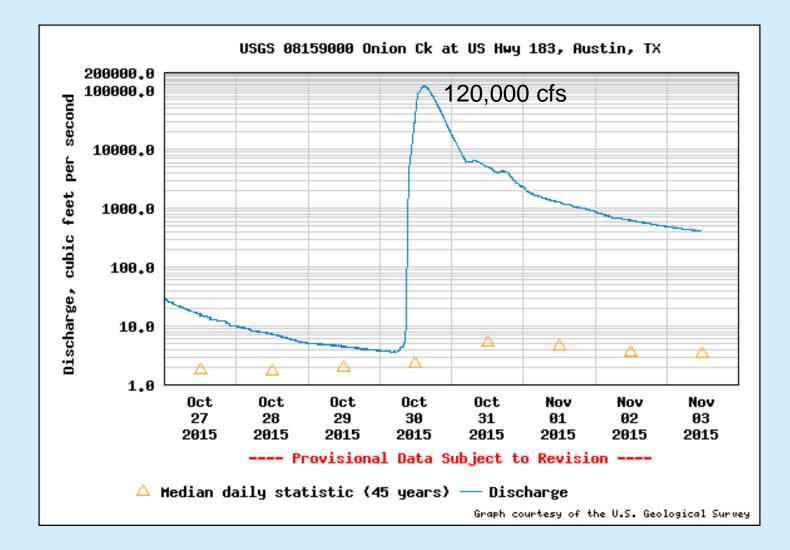
David R. Maidment Center for Research in Water Resources University of Texas at Austin

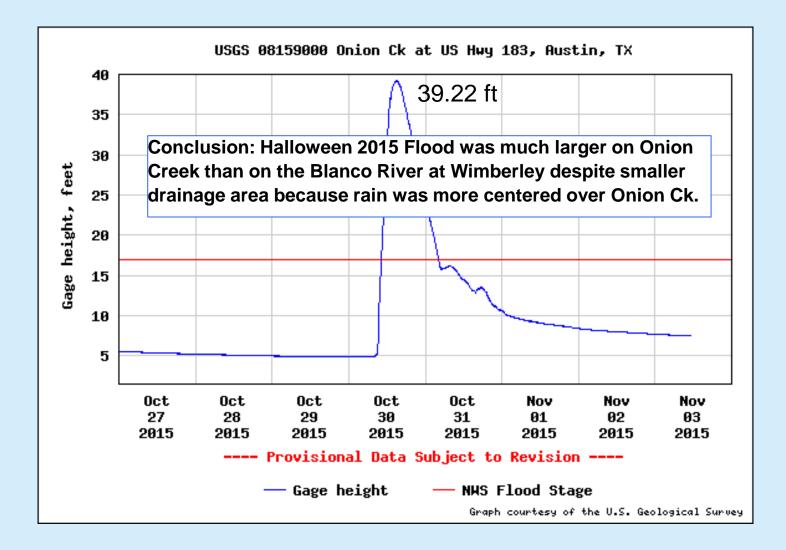

Seminar on Flooding in Wimberley Austin, TX 9 November 2015

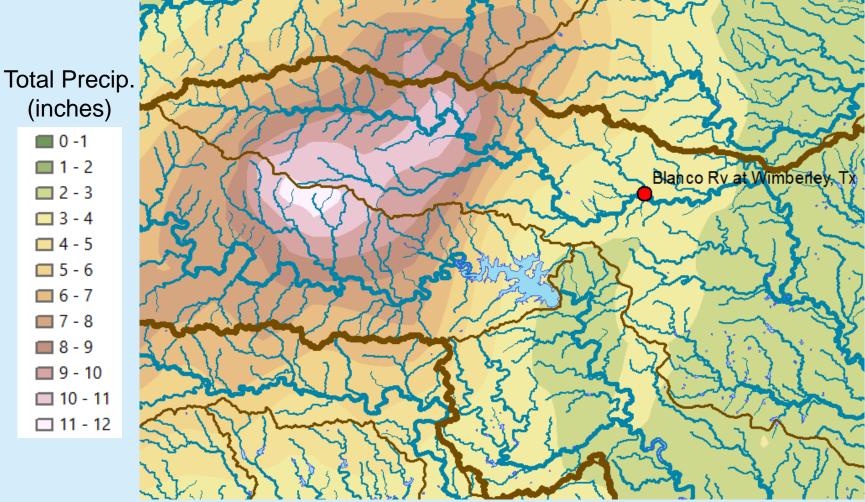
Acknowledgements: Harry Evans, Cassandra Fagan, ESRI, Kisters, Microsoft Research This research is supported by the National Science Foundation

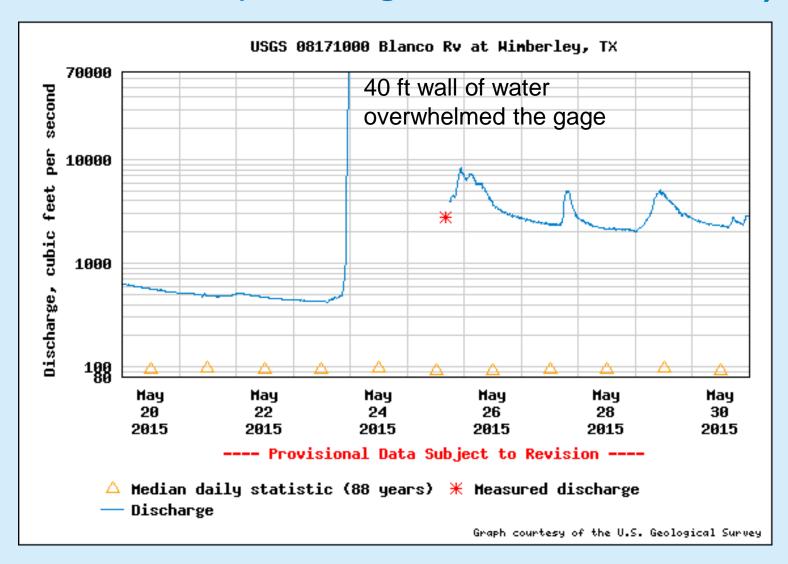


Source: Larry Hopper, NWS


Blanco River at Wimberley (Flow) (Drainage area 355 mile²) Halloween 2015


Blanco River at Wimberley (Stage Height) Halloween 2015


Onion Creek at Highway 183 (Flow) (Drainage area 321 mile²) Halloween 2015


Onion Creek at Highway 183 (Stage Height) Halloween 2015

Memorial Day 2015 Weekend Precipitation on Blanco River

Flow in Blanco River at Wimberley, Memorial Weekend 2015 (much larger than Halloween 2015)

Storm Rainfall during Memorial Day Weekend

http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=radar&theme=radar&display=nexrad

The Opportunity

New National Water Center established on the Tuscaloosa campus of University of Alabama by the National Weather Service and federal agency partners

Has a mission to assess hydrology in a new way at the continental scale for the United States

NWS River Forecast Centers (RFCs)

 Prepare river and flood forecasts using models based on average basin characteristics

Frovide forecast guidance to Weather Forecast Offices (WFOs)

Issue daily stage and streamflow forecasts, rainfall and drought data and information, and flash flood guidance

6600 sub-basins in continental US

 Work with water managers and other Federal Agencies

FY15 Centralized Water Forecasting

National Water Center

- Centralized Data Archive all RFC data
- Modeling Evaluation Service

CBRFC

- RFC and NWC modeling and forecasts
- Modeling Testbed new NWC capabilities
- Centralized Water Forecasting Demonstration

NATIONAL WATER CENTER

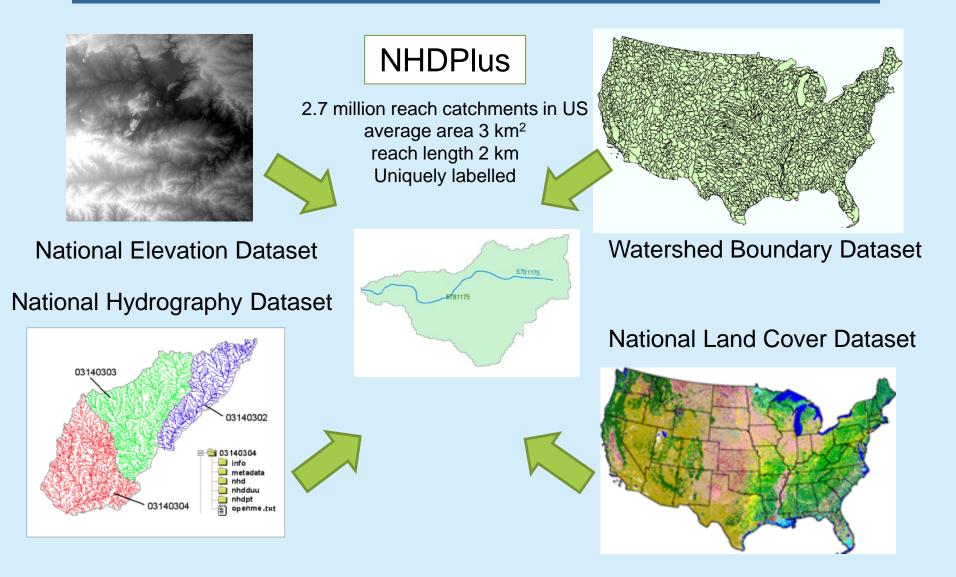
Inaugural Meeting – May, 2014

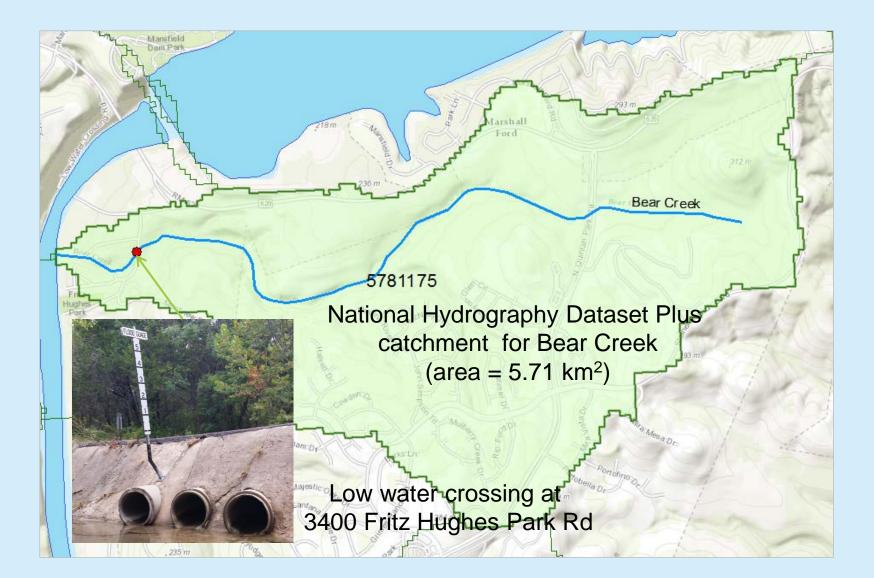
Transformative Research (NSF)

Transformative research involves ideas, discoveries, or tools that radically change our understanding of an important existing scientific or engineering concept or educational practice or leads to the creation of a new paradigm or field of science, engineering, or education. Such research challenges current understanding or provides pathways to new frontiers.

How to move from evolutionary change to transformative change?

National Flood Interoperability Experiment (NFIE) (Sept 2014 to August 2015)


- Partnership between NWS and the academic community (Interagency Agreement between NSF and NOAA)
- Included a Summer Institute for 44 graduate students from 19 Universities at the National Water Center, June 1 to July 17, 2015



NHDPlus Version 2.1

Foundation for a Geospatial Hydrologic Framework for the United States

Flood Information for Fritz Hughes Park Rd

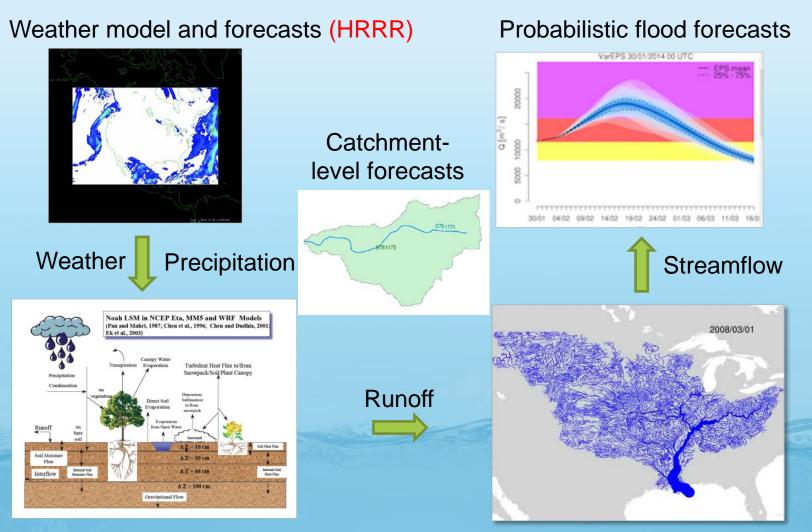
Stampede

1.2 million gallon cooling tank

500,000 processors operating in parallel

1

1

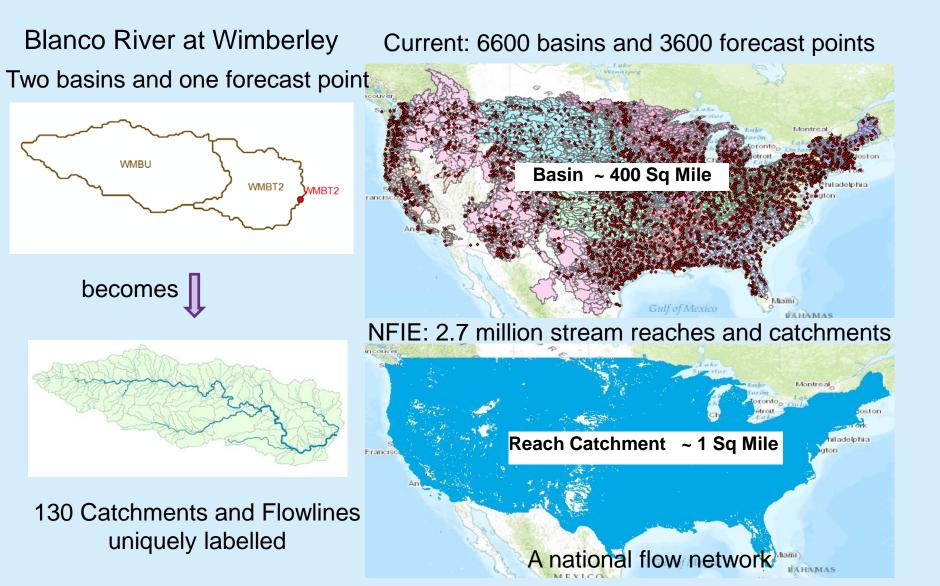


TEXAS ADVANCED COMPUTING CENTER

WRF-Hydro Forecasting Model

Computed for the continental US in 10 minutes at Texas Advanced Computing Center

Land-Atmosphere Model (NOAH-MP)


RAPID flow routing (for continental US)

Next Step: National Water Prediction Model Configurations

WRF-Hydro IOC Configurations – May 2016

Current and New Forecast Systems

Linear Referencing on Flowlines

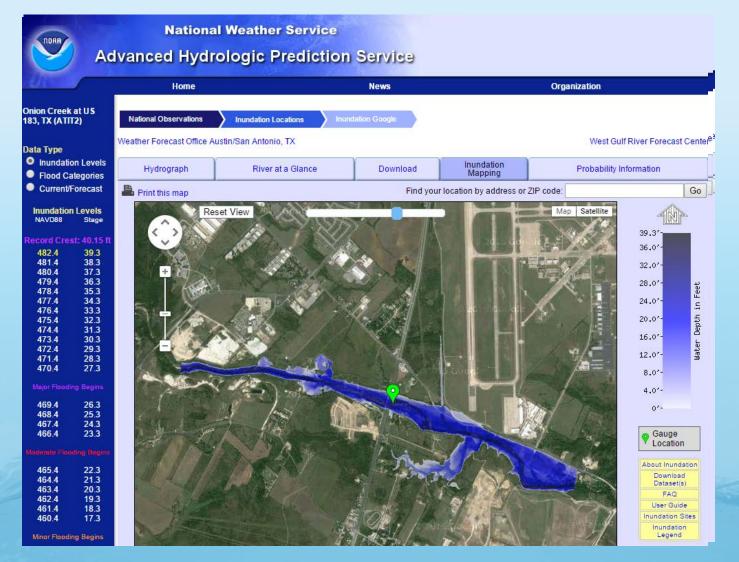
Using measures, the flow can be estimated at any point along the line

Bridge and Stream Gage at RR 12 is at Measure 70.246 on Flowline 1630223

	#	Х	Υ	Z	М	
	0 🗌	-98.095	29.991	0.000	100.000	
Endle	1	-98.094	29.991	0.000	98.393	
	2	-98.093	29.992	0.000	90.423	
AltRacetin 319 m	✓ 3	-98.089	29.994	0.000	70.246	
319 m	4	-98.088	29.994	0.000	65.321	
172	5	-98.086	29.994	0.000	58.974	
old Kyle Ro K	6	-98.085	29.994	0.000	52.424	
	7	-98.084	29.994	0.000	48.200	
Blanco, Rv at Wimberley, TX 1620223	8	-98.083	29.993	0.000	42.164	
the some logo and blance	9	-98.082	29.992	0.000	36.219	
Bulle 400 1630223	1.	-98.082	29.991	0.000	29.977	
	1.	-98.082	29.991	0.000	29.482	
ess Creek	1.	-98.081	29.991	0.000	28.690	
E Para P	1.	-98.081	29.990	0.000	19.728	
Southriver and Aler St. X 38.0	1.	-98.080	29.989	0.000	12.962	
	1.	-98.080	29.988	0.000	9.031	
	1.	-98.080	29.986	0.000	-0.000	
	L	_ong.	Lat.		Measu	ire

Measure is the % distance upstream from most downstream point on line

New Radar Measurement Technologies

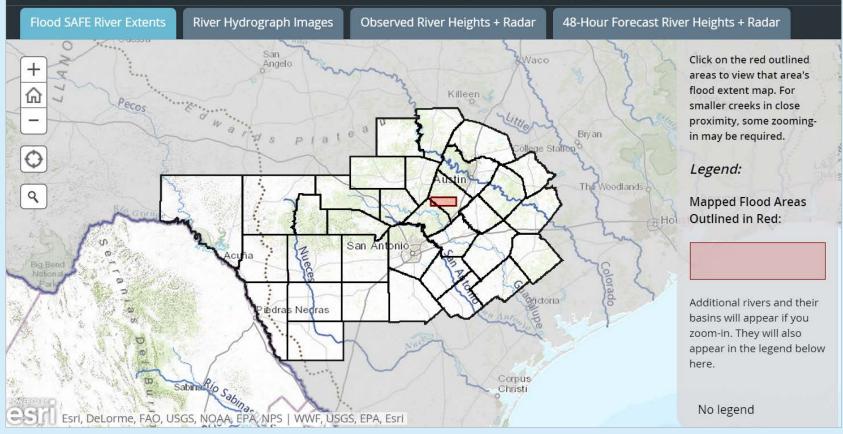


Measures surface velocity

Measures water level

Densified flood forecasting requires densified measurement

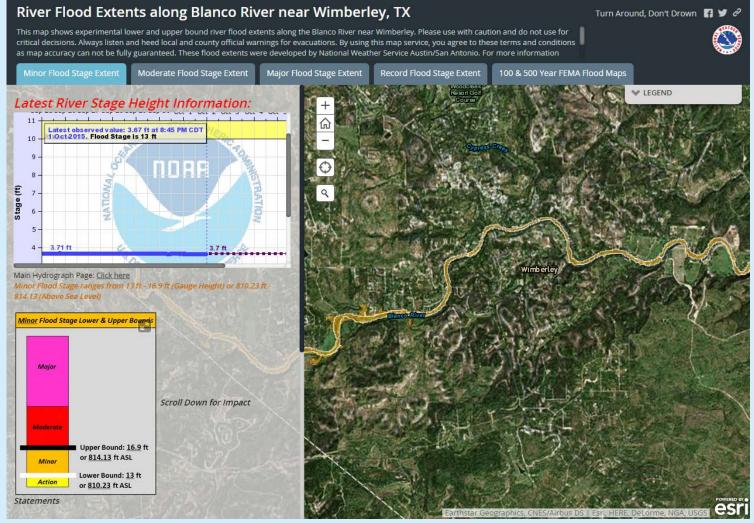
Real-Time Flood Inundation Mapping (NWS/AHPS)


http://water.weather.gov/ahps2/inundation/inundation_google.php?gage=atit2

Situational Awareness For Everyone (SAFE)

Flood SAFE Viewer - River Flooding Situational Awareness...

Turn Around, Don't Drown 🛛 🖌 🎾 🖉


Use this map viewer to remain river flooding aware for your area. Areas mapped will be outlined in red. Click the red outlined area of your choice to view the hydrograph and a direct link to the flood extent mapping page for that river. This will open a new viewer of that specific site where you can see flood extents for various river

Source: Jared Allen, NWS Austin-San Antonio Weather Forecast Office

Flood SAFE Viewer: http://arcg.is/1LPOHnE

SAFE Map for Blanco River near Wimberley, Tx

Source: Jared Allen, NWS Austin-San Antonio Weather Forecast Office

Blanco River Proof-of-concept Map: http://arcg.is/1GtObu3

Conclusions

Continental flood simulation works and is being implemented by May 2016 at National Water Center

UT Austin and City of Austin are contributing through the National Flood Interoperability Experiment

New flood forecasting system will be 400 times more spatially dense and will be updated hourly

Instead of one forecast point on Blanco River at Wimberley there will be **130 forecast reaches** in the Blanco River watershed above Wimberley

Need a much densified observation network to support this forecasting system

Flood Response and Planning

Harry R. Evans Center for Research in Water Resources University of Texas at Austin

Seminar on Flooding in Wimberley Austin TX, 9 November 2015

Acknowledgements: Cassandra Fagan, Austin Fire Dept., COA Watershed Protection, David R. Maidment

Flood Emergency Response

Emergency Responders

Incident Response

Current and forecast storm rainfall Public notification and warnings ٠ ٠ Creates Flood Response Maps Current and anticipated road closures ٠ ٠ Current and forecast flood conditions Real-time and forecast flood maps ٠ Evacuation routes Impact on homes, critical • • infrastructure, and transportation routes Wide Area Flood Plan **Public Education** Static flood maps Location based risk • ٠ Number of flooded homes, critical Evacuation routes • ٠ infrastructure and transportation Putting together a "go bag" for ٠ routes for different risk conditions evacuation Pre-planning of flood response Flood hazard prevention methods • ٠ mobilization

Warnings

Public

Action

Planning

Flood Emergency Response

- Real Time Flood Response Maps: More accurate resource allocation, threat assessment, public impact
- Public Warning: Credible and actionable
- Pre-Planning: enhances disaster response
- Public Education: more public awareness & readiness results in more effective flood response

Community Flood Response Map Book

Austin Fire Department Flood Handbook

Source: Tomas Rodriguez, City of Austin

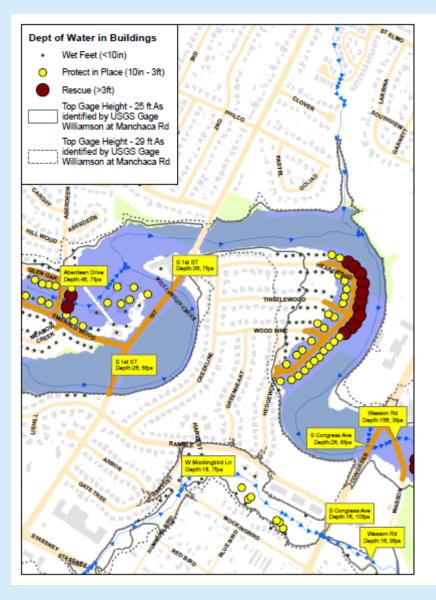
Contents

Onion Creek

Slaughter Lane to Bluff Springs

- Minor Flood 1
- Moderate Flood 2
- Major Flood 3 Bluff Springs to William Cannon
 - Minor Flood 4
 - Moderate Flood 5
 - Major Flood 6

Shoal Creek


15th Street to Ladybird Lake

- Minor Flood 7
- Moderate Flood 8
 - Major Flood 9

Crosscreek to Anderson Lane

- Minor Flood 10
- Moderate Flood 11
 - Major Flood 12

Flood Response Map

MAJOR FLOOD LEVELS

Middle Williamson Creek - Near Heartwood Road Forecasts Associated w/ USGS WMS At Manchaca 08158930

ACTIONS

- Notify City of Austin message that dangerous flooding is occurring in middle Williamson along Heartwood Drive in block ranges 300 to 500 – several feet in homes.
- Notify residents along Emersid Wood, Glen Oak, and Aberdeen (as indicated in table below) that they should shelter in place until waters have receded.
- Berricade of Wasson Road LWC should already have occurred.
- Need barriceding resources at 5100 South Congress if that has not already occurred.
- BE ADVISED that travel over 5100 South Congress at Williamson Creek should be avoided because creek has overtopped roadway by several feet.

In addition, South 1^e (4700 -5200 block) at Williamson Creek is overtopped from 4 to 9 feet and should have been barricaded. THIS IS ALL THREE CROSSINGS OF WILLIAMSON CREEK.

Manchaca Road (5000 block) is overtopped north of Jones Road by 3 feet.

Therefore, routes to area are restricted from north to south. Trevel is possible south from IH 35 to Stassney Drive and from MoPac south to William Cannon eastbound.

Rescue of residents from 300 – 500 block of Heartwood on RL side. Advise residents in the 5100 block of Aberdeen, the 800 block of Gien Oek, and the 800 block of Emerald Wood Drive to try to move up and sheller in place. The 5103 and 5105 Aberdeen homes will have just over 3 feet of water. APPROXIMATELY ONE HOUR FOR WARNING IN THIS AREA. NOTE – Williemson Creak has not witnessed this flooding EVER.

INDICATORS

0

- NFIE forecasts creek level at USGS Gauge at Manchaca to be at 21 feet and rising.
- Note that on 10/13/13 gauge was estimated at 21 feet.
- 5 inches or more in 3 hours or less with wet soil conditions

ROAD CLOSURES AND DEPTHS

- Wasson Road –18 feet (low water crossing)
- 300 500 block of Heartwood Drive 2 to 3 feet
- 5100 South Congress (Williamson Creek crossing) 5 feet
- 4700 5200 block of South 1⁴ (Williamson Creek crossings) 4 9 feet
- 5300 block of Emerald Forest Drive (Williamson Creek crossing) 4 feet
- 5000 block of Manchaca (Williamson Creek crossing) 3 feet
- 5100 block of Aberdeen 4 feet
- 800 block of Emerald Wood 2 feet

Depth of Water in Homes	River Lift (RL)	River Right (RR)	Total	General Block Ranges
Rescue	26	12	.38	300-500 Heartwood
Rescue	1	0	1	5001 S. Congress
Rescue	1	1	1	5103; 5105 Aberdeen
Shelter in Place	6	0	6	800 Glen Oak
Shelter in Place	0	14	14	800 Emerald Wood
	0	.25		

Map produced by City of Austin Hood Early Warning System (FEWS) In conjuction with Austin Fire Department and University of Texas Updated October 2015

Public Education

FLOOD PREPARATION

Prepare for Flooding Before it Occurs!

Community Flood Response System

Flood Response Map Book

Personal Flood Response Guide

Web Based Flood Emergency
 Information System

Disaster Warning Response: Risk Assessment and Action

Calvin L. Streeter The University of Texas at Austin School of Social Work

Risk perception to action chain

What Influences Perception of Risk?

Scientific characteristics of the risk

- Likelihood
- Magnitude

Information dissemination

- Confidence/trust in sources
- Timing
- Message content

Personal attributes

- Direct and indirect experience in past
- Trust in authorities

Contextual factors

- Social networks and interpersonal dynamics
- Cultural beliefs

Risk Perception Paradox

- 1. Individuals understand the risk but choose to accept it because the perceived benefits outweigh the potential negative impacts
- 2. Individuals understand the risk but do not realize what actions to take
- 3. Individual understand the risk but lack the resources to act
- 4. Individuals feel their personal property might be at risk should they evacuate

Implications for Risk Management

Community engagement and risk management

- 1. Builds trust with authorities and experts
- 2. Authorities gain knowledge from the "lay experts"
- 3. Public gains knowledge of what they can expect from authorities and what they need to do to improve their own protection

Flood Response and Planning

Harry R. Evans Center for Research in Water Resources University of Texas at Austin

Seminar on Flooding in Wimberley Austin TX, 9 November 2015

Acknowledgements: Cassandra Fagan, Austin Fire Dept., COA Watershed Protection, David R. Maidment

Public

Action

Planning

Flood Emergency Response

Emergency Responders

Incident Response

 Current and forecast storm rainfall Creates Flood Response Maps Current and forecast flood conditions Impact on homes, critical infrastructure, and transportation routes 	 Public notification and warnings Current and anticipated road closures Real-time and forecast flood maps Evacuation routes 		
Wide Area Flood Plan	Public Education		
 Static flood maps Number of flooded homes, critical infrastructure and transportation routes for different risk conditions Pre-planning of flood response mobilization 	 Location based risk Evacuation routes Putting together a "go bag" for evacuation Flood hazard prevention methods 		

<u>Warnings</u>

Flood Emergency Response

- Real Time Flood Response Maps: More accurate resource allocation, threat assessment, public impact
- **Public Warning:** Credible and actionable
- **Pre-Planning:** enhances disaster response
- Public Education: more public awareness & readiness results in more effective flood response

Community Flood Response Map Book

Austin Fire Department Flood Handbook

Source: Tomas Rodriguez, City of Austin

Contents

Onion Creek

Slaughter Lane to Bluff Springs

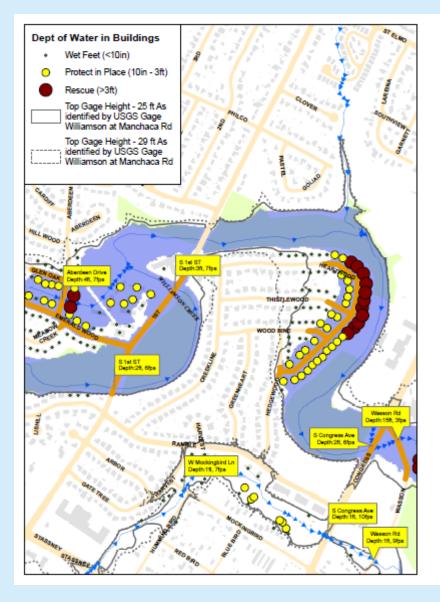
- Minor Flood 1
- Moderate Flood 2
- Major Flood 3

Bluff Springs to William Cannon

- Minor Flood 4
- Moderate Flood 5
 - Major Flood 6

Shoal Creek

15th Street to Ladybird Lake


- Minor Flood 7
- Moderate Flood 8
 - Major Flood 9

Crosscreek to Anderson Lane

- Minor Flood 10
- Moderate Flood 11
 - Major Flood 12

The University of Texas at Austin School of Social Work

Flood Response Map

MAJOR FLOOD LEVELS

Middle Williamson Creek - Near Heartwood Road Forecasts Associated w/ USGS WMS At Manchaca 08158930

ACTIONS

- Notify City of Austin message that dangerous flooding is occurring in middle Williamson along Heartwood Drive in block ranges 300 to 500 – several feet in homes.
- Notify residents along Emersid Wood, Glen Oak, and Aberdeen (as indicated in table below) that they should shelter in place until waters have receded.
- Berricade of Wasson Road LWC should already have occurred.
- Need barriceding resources at 5100 South Congress if that has not already occurred.
- BE ADVISED that travel over 5100 South Congress at Williamson Creek should be avoided because creek has overtopped roadway by several feet.

In addition, South 1^e (4700 -5200 block) at Williamson Creek is overtopped from 4 to 9 feet and should have been barricaded. THIS IS ALL THREE CROSSINGS OF WILLIAMSON CREEK.

Manchaca Road (5000 block) is overtopped north of Jones Road by 3 feet.

Therefore, routes to area are restricted from north to south. Trevel is possible south from IH 35 to Stassney Drive and from MoPac south to William Cannon eastbound.

Rescue of residents from 300 – 500 block of Heartwood on RL side. Advise residents in the 5100 block of Aberdeen, the 800 block of Gien Oak, and the 800 block of Emerald Wood Drive to by to move up and sheller in place. The 5103 and 5105 Aberdeen homes will have just over 3 feet of water. APPROXIMATELY ONE HOUR FOR WARNING IN THIS AREA. NOTE – Williemson Creek has not withressed this flooding EVER.

INDICATORS

0

- NFIE forecasts creek level at USGS Gauge at Manchaca to be at 21 feet and rising
- Note that on 10/13/13 gauge was estimated at 21 feet.
- 5 inches or more in 3 hours or less with wet soil conditions

ROAD CLOSURES AND DEPTHS

- Wasson Road –18 feet (low water crossing)
- 300 500 block of Heartwood Drive 2 to 3 feet
- 5100 South Congress (Williamson Creek crossing) 5 feet
- 4700 5200 block of South 1^{et} (Williamson Creek crossings) 4 9 feet
- 5300 block of Emerald Forest Drive (Williamson Creek crossing) 4 feet
- 5000 block of Manchaca (Williamson Creek crossing) 3 feet
- 5100 block of Aberdeen 4 feet.
- 800 block of Emerald Wood 2 feet

Depth of Water in Homes	River Lift (RL)	River Right (RR)	Total	General Block Ranges
Rescue	26	12	.38	300-500 Heartwood
Rescue	1	0	1	5001 S. Congress
Rescue	1	1	1	5103; 5105 Aberdeen
Shelter in Place	6	0	6	800 Glen Oak
Shelter in Place	0	14	14	800 Emerald Wood
	0	.25		

Map produced by City of Austin Flood Early Warning System (FEWS) In conjuction with Austin Fire Department and University of Texas Updated October 2015 FLOODING MAJOR ł Road **Creek near Heartwood** Middle Williamson

Public Education

FLOOD PREPARATION

Prepare for Flooding Before it Occurs!

Community Flood Response System

- Flood Response Map Book
- Personal Flood Response
 Guide
- Web Based Flood Emergency
 Information System

Disaster Warning Response: Risk Assessment and Action

Calvin L. Streeter The University of Texas at Austin School of Social Work

Seminar on Flooding in Wimberley Austin TX, 9 November 2015

Risk Perception to Action Chain

What Influences Perception of Risk?

Scientific characteristics of the risk

- Likelihood
- Magnitude

Information dissemination

- Credibility and confidence in sources
- Timing
- Message content

Personal attributes

- Direct and indirect experience in past
- Trust in authorities

Contextual factors

- Social networks and interpersonal dynamics
- Cultural beliefs

Risk Perception Paradox

- Individuals understand risk but choose to accept it because the perceived benefits outweigh the potential negative impacts
- 2. Individuals understand the risk but do not know what actions to take
- 3. Individual understand the risk but lack the resources to act

Implications for Risk Management

Community engagement and risk management

- 1. Public forums and community meetings
- 2. Canvas areas at greatest risk
- 3. Citizen advisory groups
 - Builds trust with authorities and experts
 - Public safety officials gain knowledge from "lay experts"
 - Public gains knowledge of what they can expect from authorities and what they need to do to improve their own protection